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EXIT PROBABILITIES AND OPTIMAL STOCHASTIC CONTROL

by

Wendell H. Fleming

Abstract: This paper is concerned with Markov diffusion processes

which obey stochastic differential equations depending on a small
&

parameter f. The parameter enters as a coefficient in the noise

term of the stochastic differential equation. The Ventcel-Freidlin
E whbrvachse @
i L
estimates give asymptotic formulas (as ¢ » 0) for such quantities

as the probability of exit from a region D through a given portion
1o D

Vo FIONEN

N of the boundary QP, the mean exit time, and the probability of
exit by a given time T. A new method to obtain such estimates is

given, using ideas from stochastic control theory.
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EXIT PROBABILITIES AND OPTIMAL STOCHASTIC CONTROL

Wendell H. Fleming

Accompanying Statement

This paper is concerned with Markov diffusion processes

which obey stochastic differential equations depending on a

small parameter €. The parameter enters as a coefficient in

the noise term of the stochastic differential equation. The

Ventcel-Freidlin estimates give asymptotic formulas (as € =+ 0)

for such quantities as the probability of exit from a region D

through a given portion N of the boundary 3D, the mean exit time, !
and the probability of exit by a given time T. A new method to
obtain such estimates is given, using ideas from stochqstic
control theory.

The method involves a logarithmic transformation on
positive solutions ge(x) of the elliptic partial differential
equation &fege = 0, where &fe is the generator of the diffusion
process. In fact, JE = =€ log ge satisfies a nonlinear elliptic f
partial differential equation, which is just the dvnamic programming
equation associated with the stochastic control problem. The
boundary data ¢(x) for Je(x) are chosen according to a "penalty
function" method; for example, if it is desired that exit occur

through N C D, then we take ®(x) = 0 on N and ¢(x) large

on compact subsets of the complement of N. When € = 0 the

dynamic programming equation reduces to the Hamilton-Jacobi equation




Accompanying Statement (Continued) Page 2

for the calculus of variations problem which enters in the Ventcel-
Freidlin estimates. Thus, the stochastic control method provides
not only a different way to prove such estimates, but also a differ-

ent intuition to explain why one should expect them to be true.




EXIT PROBABILITIES AND OPTIMAL STOCHASTIC CONTROL

Wendell H. Fleming

1. Introduction. Consider a Markov diffusion process

£° on n-dimensional R" which obeys the stochastic differential
equations
€ 16 s
(1.1) d€ " = b[E (t)]ldt + Ve o[§ (t)]dw, t > 0,
with initial data &E(O) = X. Here w 1is an n-dimensional

brownian motion and € a positive parameter.
; : : &
Let IS denote the exit time of ¢ (t) from an open bounded
set D C R". The Ventcel-Freidlin estimates give asymptotic

formulas (as € » 0) for such quantities as the probability

Px(ie(lg) € N), where N C 3D, the mean exit time EXT;, and the
probability PX(TS < T) of exit by a fixed time T. See [16],

[17], [7, II, Chap. 14]. 1In this paper we give a new method to
obtain such estimates, using ideas from optimal stochastic control
theory. However, the paper is self-contained as far as knowledge
of stochastic control is concerned.

There are two kinds of Ventcel-Freidlin estimates. The first
kind give lower estimates for the probability that Ee(t) remains
in a given open set of curves for 0 < t < T; see [7, II, p. 332].
These lower estimates follow rather easily from the Girsanov
transformation formula. At the end of the paper we outline a

somewhat different derivation of a lower estimate,




The second kind of Ventcel-Freidlin results give upper g
estimates for the probability that ig(t) remains in a given
closed set of curves [7, II, p. 334-345]. The proofs are more
technical. Our main results provide estimates of the second kind,
which suffice to study the problem of exit.

We begin in §2 by making a logarithmic transformation on
positive solutions gﬁ(x) of the elliptic paftial differential
equation %" = 0 in some region A, where %% is the generator
of the diffusion process CE. In fact, let JE = -€ log gE. Then
Je(x) satisfies the nonlinear partial differential equation (2.5),
with given boundary data gt = ¢ on 3D. Theorem 2.1 states

€ : S : :
that J (x) is the minimum for a certain stochastic control

problem, in which the drift coefficient b in (1.1) is replaced
by a control process v(t). A similar logarithmic transformation
was used by E. Hopf [10] to solve Burger's equation. Recently,
(and independently of our work) Holland (8], [9] used a
logarithmic transformation of solutions to second order linear

elliptic equations. He obtained a stochastic control representation

of the dominant eigenvalue for Schrodinger's equation, and another
proof of the Donsker-Varadhan formula for the dominant eigenvalue

in case of natural boundary conditions.

The Ventcel-Freidlin estimates involve minimizing the
following functional 1I(¢,%) for various choices of R"-valued

functions ¢ (t) and 0 > 0. Let

0

(1.2) 1(¢,9) = I‘L[¢(t),$(t)]dt'
0

n
where for x, v €R




ey

(1.3) Lik.v) = (Bix) =) 'alx) S Bz} ~ v,

a(x) o(x)o'(x).

In particular, let A be open, bounded, with x = ¢(0) in A;
and let 9 be the exit time of ¢(t) from A. For N C 3A
let I,(x,N) denote the infimum of 1(¢,9) subject to the

additional condition ¢ (Y) € N. Theorem 5.1 implies that

¢ €, € .
-I, (x,N) = iig € loy Px(ﬁ (ty) € N),
under some rather stringent hypotheses on » and A. As in
known ([16], (17], (7, II, pp. 386-387] one can then apply

Theorem 5.1 to get results on the exit place and exit time of

5 (t) from a region D, under certain assumptions on the behavior
ag t + & of solutions of the unperturbed system §Y = b[&o(t)].
We include one such result in 8§6.

In 83 we consider instead of (1.2) the corresponding func-
tional Ff($,9) obtained by adding a term ¢[¢ (V)] on the right
side of (1.2). If ¢(y) =0 for y €N and ¢ > 0, we may
regard ¢®[¢?(9)] as a penalty imposed if ¢ (Y9) ¥ N at the exit
time 9. Later (in §5) we take a sequence ¢” of penalty functions
such that ®,(y) *+ + as M+ ® for y f N.

In §7 we consider the nonautonomous form of (1.1) on a finite
time interval s < t < T. There is a considerably simpler proof

of the main result (Theorem 7.1); and no assumptions on the large-

time behavior of the unperturbed system are needed.




2. The logarithmic transformation. With the stochastic

differential equation (1.1) is associated the differential generator

o namely,
a’k(x)ngxk s b(x).

a= (a.,) = 00', and 9, is the gradient. We assume:

(Al) b(x),0(x), and the inverse o—l(x) are bounded,

Lipschitz functions on R".

Since 0-1 is bounded, <" is a uniformly elliptic operator for

each € > 0.

et & € Rn be an open, bounded set, with C2 boundary 9dA
(i.e., 3A 1is a manifold of class C2.) Let & be of class C2,

and ¢ > 0. Consider the boundary value problem

(2.1) <95 =0 in A
(2.2) gE(x) = exp|[- iiéll on 3A.

There is a unique solution gE, of class CZ(A)f\ CI(K),

X =A U?J, See [11, Chap. III, §12, 15]. Moreover,

, OLE ()]
(2.3) g (x) = EXGXP'- -2 },

t g
where ', is the exit time from A of & (X).

We make the following logarithmic transformation. Let

-




(2.4) J5(x) = -€ log g% (x).

By elementary calculus, JE satisfies in A the nonlinear elliptic

equation

(2.5) 0 =

N[ ™

B € £
¥ ajk(x)Jx - LB T Y
i ;

j. k=1 jk ‘

where for each x and row vector p

(2.6) H(x,p) = - % pa(x)p' + p'b(x).

Then H(x,-) 1is dual to L(x,*), where L was defined by (1.3), in

the sense of duality for concave and convex functions. In

particular, from (1.3) and (2.6)

€2.7) H(x,p) = min[L(x,v) + p-v].
v

Equation (2.5) is the dynamic programming equation for the
following optimal stochastic control problem. Let n(t) denote
the state of a system being controlled for t > 0, and v(t) the
control used at time t (n(t) € Rn, v(t) € R" for each t). These
processes are defined on some probability space (£, %,P) and are
nonanticipative with respect to some increasing family {,92}
of o-algebras, 51 C %. We assume that the control v(t)
is bounded. The state n satisfies the stochastic differential

equation

(2.8) dn = v(t)dt + V€ o[n(t)]ldw

[
|
F

S S =l




"......-'-l!u-l--l----l-----l-'-'-'-"'“""""'“'

with n(0) = x, where x ¢ A and w 1is some brownian motion
adapted to { 9%}.

Let U denote the exit time of n(t) from A, and let
0

YL[n(t),v(t)]dt + ¢[n(n)]l.
0

(2.9) v = nU

The stochastic control problem is to minimize x/{(x,v) given the
initial state x.

From the fact that JF(x) is a solution in class
Cz(A) N Cl(N) of the dynamic programming equation (2.5), with
J = ¢ on 03A, one can show that JE(x) is the minimum of
’fi(x,v) and can characterize an optimal control process ve(t).
This result is called a verification Theorem [6, p. 164], and
is stated below as Theorem 2.1. For completeness we include the
easy proof; as follows.

From (2.5) and (2.8)

. n
€ € €
(2.10) s 0% B d + J_sv(t) + Lin(t),v(t)] > 0,
2 3,k=1 jk 5%y X
where a k'Ji % ,Ji are evaluated at n(t). We apply the Ito
- 1R Y )
stochastic differential rule to Jeln(t)] and take E f --=- dt:
0
. g &
(2.11) J7(x) < E J L{n(t),v(t)]dt + ET [n(0)].
0
2 €
Since J = ¢ on 234,
- €
(2.12) 35x) < foxv.




If v is a function from A into Rn, we say that the
control process v(t) 1is obtained from the feedback control law V,

for initial data n(0) = 3x, if
(2.13) v(t) = vin(t) ], g <& <8,
For t > 6 we set v(t) = 0; this does not affect dfe(x;v). We
admit any feedback V which is bounded and locally Lipschitz
an A
In particular, let

€ € € ;
(2.14) vV (x) = Hp(x,Jx(x)) = b(x) - a(x)Jx(x) .

€ € . ,
Let v (t),n (t) be the corresponding control process and solution

of (2.8), for given initial data nE(O) = X. Equality holds in
(2.10) when v = vE,n = HC. Then equality also holds in (2.11)
when 0 = OE, with 9° the exit time of nE from A. Therefore,
(2.15) 35 x) = £Exv).

From (2.12) and (2.15) we have:

Theorem 2.1. JE(x) is the minimum of ,fs(x,v), and V is

an optimal feedback control law.

3. A deterministic minimum problem. When € = 0 we consider

the following minimum problem. Let Cn[o,w) denote the space of

continuous, R'-valued functions on [0,~), and ﬂ{l the space of




SSSRp————
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all ¢ » (‘nll),“') such that ¢ is absolutely continuous and
T . 2 ‘

[# (t) |“dt < » Ffor cach T > 0. TFor ¢ ¢ & and 0 > 0 Jlet
. i

0

(3.1) S0,0) = f LIP(t) b (t)]dt + afd(u)].
)]

o
Let A be open bounded, with €% boundarvy 2A; and let ¢ be of

class (‘2,4\ > 0. Given x € A let

(3.2) J(x) = inf _f(¢,0),
@,
where the infimum is taken among all ¢,Y such that ¢(0) = x,

p(t)e X for 0 < t

I~

O, ¢(0) € 3A. under condition (l!l) below
the minimum is attained in (3.2), but we shall not use this fact.
Note that if we set * = 0, n(t) = ¢(t), v(t) = ¢(t) in (2.8),
then (2.9) reduces to (3.1). Moreover, when ¢t = 0 the dynamic pro-
gramming equation (2.5) reduces to 0 = Il(x,.Tx). This is the
Hamilton-Jdacobi eaquation associated with (3.2). One might
expect therefore that .TL(x) tends to
J(x) as ¢ » 0. We shall prove in §4 a partial result of this kind.
See Lemma 4.2 and the Note, end of §4.

In §i's 3-5 we make the following assumption about the function

b  and the region A.

) kg MI and ¢(t) e A for all t > 0, then

o

f LG (6),9 (t)]dt = 4o,
0

Let f.o(t,-x) denote the solution of

0
(3.3) G- =biexl, t3o0




with io(o;x) = x. Note that (3.3) is the unperturbed version of

(1.1), with € = 0. Let us show that (Bl) ig implied by the

~

following property (Bz). For a >0, let A, = {y: dist(y,A) > a},

(¢4

(Bz) There exist T, > 0, o > 0 with the following property:

for everv x € A, there exists t € [0,T such that

1]

~

0 :
E7(tix) € A,. ,

Lemma 3.1. (Bz) implies (Bl).

Proof. Suppose that ¢ € o and e} & A for all & 3 0.

Let Tl,a be as in (Bz); and for j =0,1,2,... let

I AR S i :
() = ET(ts0 (3Ty)), ¢4 (k) = @ (t4jT)).

Let M be a Lipschitz constant for b, and let || ||t denote the
sup norm on [0,t]. Then, for 0 < t < Tl,
d.(t) - EQ(t) = ftlé.-b(¢.)]ds + ft[b(¢.) - b(EQ)]ds,
j j o 3 3 il j
1
(19 = €20 [ ¢ t%[ft|$. - b(¢-)|2ds]2 + M ft1|¢. = &20 da.
s S 5. 9 j A CR Gt

Moreover, by (1.3}, |v-b(y)|2 < CL(y,v) for some C. By
Gronwall's inequality

1
T 2

1 :
£ C J L(¢.,0.)dt| ,
Ty R Ay Y

]
with C, = (CTl)Eéxp MT,. However, & < [ ]9, -g9|
J
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with x replaced by ¢(jT), since ¢j(t) e n foxr Qe txT

X* i
Thus !
(3+1) 7T
3 <3 Bl oA ,
a Cl _<_ L(¢IQ)dt' 3 0,1,2,... .
Ty

0

Hence, f L($,$)dt = +> , which proves Lemma 3.1. |
0 |

Lemma 3.1 has the following simple intorpfotation. Condition
(Bz) says that a particle following the flow (3.3) is swept out i
of X in bounded time. If L(¢,$) is interpreted as a rate |
at which energy is expended to resist the flow, then infinite

energy is required to remain in A indefinitely. it

4. A semicontinuity result. In this section we consider

lower semicontinuity of Jc(x) as a function of € and x,

at € = 0. For this purpose let us consider initial state x"

tending to a limit x0 as E > 0 (xL € A). As in §2, let

(=
v ,N be the optimal control process and corresponding solution

= & X
of (2.8) with ﬂ*(O) = X . Recall that v&(t) is obtained via

(2.13) from the feedback control law VK, for 0 < &£ < Ot, and

v (t) =0 for &> 8°,

Consider any sequence €’ tending to 0 as n » ~, and let
7 &

v e V.os X Vo , etc. We then have
n n
|
(4.1) n, = 9, * V€%, where
s t
¢n(t) ol + fovn(s)ds, Cn(t) = Joolnn(s)]dw.

We give Cnlo,m) the following metric, equivalent to uniform

™ ‘




convergence on each finite interval [0,T]:
a,v) = 27

For T C Cn[O,m) jet TY denote the set of restrictions ¢T

[0,T] of functions ¢ € TI'. Then is totally bhounded in

each T. 1In the next lemma we verify the Prokhorov compactness

condition for the sequences ¢n,§n.

.
Lemma 4.1. Assume that the sequence J n(xn) is bounded.

Then for every ¢ > 0 there exist totally bounded sets rlé’FZ

such that P(¢n & I R S, P(Gn € Fzs) Sl G e S o e

1

Proof. Since vn(t) is an optimal control process

0
€ n
n - nl
(4.2) I Nx) = L{JO Lin (t),v (t)]dt + ¢[nn(0n)]}.

- s C

Since ¢ > 0, J g

(x,) is bounded, and L(y,v) 2> clv-b(y),2
0

n
for some c > 0, E 3 Ivn(t) - b[nn(t)]!zdt is bounded. Since

vn(t) =0 for t > On' this implies

G 2
E folvn(t)l at < C..,

for some CT' Let

F{G = {¢: ¢(0) € A4, M’(t) B ¢(S),2 - Cj2j6—1(t—s) for 0 <8 t< jl.

c"[0,~) if and only if TIT is totally bounded in c"[0,T] for

L o 4

i1

to

$

. . i
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1‘15 = {¢: pr € I’ié, A=l 20

Then F16 is totally bounded. By Cauchy-Schwartz,

j & . : .
jg-l ; : Jie ol
folvn(t)l dt < Cj2 ¢ implies ¢n € I'{s- Hence

: SO S R TR B T

P($_ £ T ) < 8.

The existence of I‘26 with the required property follows from

the assumption that ¢ 1is a bounded function; see [13, Proposition 9].

ST

This proves Lemma 4.1.
| ket ¥ = On(1+0n)-1, and note that 0 < y < 1. Consider the
triple (¢n,én,Yn), regarded as a Czn[O,m) x f[0,1]-valued random

variable. By Lemma 4.1 there is a subsequence, denoted again by

(6r& ¢V, for which the joint probability distribution measures

converge weaklv. By Skorokhod's theorem [14] there exist

| (gn’;n’;n)' defined on the sample space Q = [0,1] with the ﬁ

same distribution as (¢n.cn,yn), such that with probability 1 ;

~
~ P

¢n’cn tend in d-metric to limits ¢,¢ and 4 tends to a random

variable Y as n » o,

Let n_ = ¢+ VE :n' Then d(ﬁn,$) + 0 with probability 1.

~ - e G i
The exit time 6  of 7. (t)] from A satiefies 7 = § (146 )%, !
n n n n n i

- w % }

Thus Yy < 1 if and only if On tends to a finite limit 0 as

n > ®, We also have ¢(0) = xo, d(t) ¢ A for O <t < 5, and

~ o~ ~

(V) € A if 0 < o,

For n,¢ € C'[0,») and 0 < Yy < 1, define
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(¢]
- 0
h(¢,%,Y) = fOL[n(t)'q“(t)]dtr g m- &

if ¢ € ayl; otherwise let h(n,$,Y) = +°. Then h is lower
semicontinuous on Czn[n,m) X [0,1]. This is a well known result;
it can be proved in the same way as [7, II, Lemma 1.2, p. 329].
The random variables h(nn,wn,Yn) and h(nn,gn,yn) have the

same distribution. Moreover, with probability 1

6 3
n 2 A
(4.3) lim inf f L(n ,$ )dt > I L(¢,¢)dt.
now SR 0

Lemma 4.2. Assume (Bl)' Then for any x0 € A,

lim inf Js(x) > J(xO).
€0 i
x-+x0

Proof. It suffices to show that

&
lim inf J "(x) > J(x°)
n ~»00 n
; 0 ; “n
for any sequences Cn’xn tending to 0,x with J (xn)

bounded. Using the notation above, we may suppose, moreover, that

~

an'$n tend to § in d-metric and On > 5, with probability 1.

In (4.2) we replace ”n’én'gn by 3 ,$ e 9 and recall that

o L s |
- n '
o én' By Fatou's lemma
“n en G . iR
(4.4) lim inf J (ﬁ# > E lim inf I L(WV¢ )dt4~¢[wﬁe Nl
g rps0 0 n n
“n
Since J (xn) is bounded and ¢ > 0, (4.3) implies
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~

s * 2 -
[ L($,0)dt < » with probability 1. Since ¢(t) e A for 0 < t < 6,
0

~

property (Bl) implies 8 < «» with probability 1. Moreover,
n (6) > §(§) with probability 1, and $(6) € aA. From (3.1),
(4.4), and the fact that ¢ 1is continuous on 24 we then have
E ~ ~
1im inf J “(x.) > B f¢,05). :
n-o Rt ‘
Since ¢ (0) = xo, we have 4!15,5) > J(xo) with probability 1,

and hence Ed!($,5) > J(xo). This proves Lemma 4.2.

Note. It can be shown that Je(x) -+ J(x) as € -+ 0, although
we do not use this fact. A proof that 1lim sup Je(x) < J(x) can
be given by the method at the end of §7. ;;g essential idea is
that given ¢, the deterministic control v(t) = §(t) can be

considered as a (suboptimal) control in the stochastic problem

in §2. A similar comparison technique was used in [3,85].

5. The exit problem (preliminary result). Let us return to the

exit problem for solutions Ee(t) to (1.1). 1In the present
section we consider a bounded open set A, with C2 boundary 94,
for which the rather strong assumption (Bl) in §3 holds. We prove
Theorem 5.1, which is then used for the main result in §6.

For N C9d3A, x € A let

(5.1) ay (x,N) = P_(E°(1) € N),

(5.2) I,f(x,m

-€ log qi(x,N),

N e—
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with LR the exit time from A of &h(t). Let

§)
(5.3) 1,tM = ing [ Bl (e),d ()]0t
¢,0 o

where the infimum is taken among all ¢ € @l and 9 such that

¢$(0) = x, #(t) €A for 0 <t <0, and ¢ (V) € N. The infimum may
also be taken in the set of (¢,0) for which, in addition, ¢ (t) € A
for 0 < t <V (and hence Y is the exit time from A for

P(t).) We also have

(5.4) I,(x,N) = IA(x,i).

For M=1,2,..., we introduce a "penalty function" ®)q 2 0 such that ¢y

is class Cz,t%ﬂx) » 40 as M=+ uniformly on anv compact subset

of R" - N and dy(x) = 0 on N. The following lemma is easily
(%)

proved, using lower semicontinuity of [ L($,$)dt with respect
0

to ¢ 1in the d-metric and with respect to 0. Write J = -

for the function in (3.2), when ¢ = ¢M'

Lemma 5.1. Assume (Bl)' Then

lim inf JM(x) > IA(xO,ﬁ).
Moo
XX

Let N0 denote the interior of N, relative to 3A.

Theorem 5.1. Assume (Bl) and that N = NO. Then

lim I;(x,N) = IA(x,N), uniformly for x in any compact set A C A.
£0




Proof. It suffices to show that, uniformly for x ¢ A,

{(5.5) © lim sup IX(x,N) & IA(x,NO)
>0

(5.6) lim inf I;(X,N) > I, (x,N).
£->0 i Py

Note that I\(x,NO) = IA(x,ﬁ) by (5.4), since N = NO. Inequality
(5.5) is an easy consequence of the first Ventcel-Freidlin estimate

[7, p. 332]. We shall indicate another proof of (5.5) at the end

of 87.
To prove (5.6) we introduce the penalty functions QM above,
€ : €
and write g = gLM, T = JEM when ¢ = @M (§2). Since ¢M(y) = 0

for y € N, we have by (2.3) and (5.1), q,(x,N) < g“'(x) for each M.
By taking logarithms, JCM(x) - Ig(x,N). By Lemmas 4.2 and 5.1,

inequality (5.6) holds uniformly for x € A. This proves Theorem 5.1.

6. The problem of exit (continued). Let D be a bounded open

set, with C2 boundary 9D. We illustrate the use of Theorem 5.1
by deriving an asymptotic result about the exit place of Ec(t)
(Theorem 6.1). With minor variations, the construction used to
prove Theorem 6.1 is the same as in [17, p. 272]1([7, pp. 386-387].

For x, y € D let

t
ID(x,y) = mig f L[¢ (t),®(t)]dt

where the minimum is taken among ¢ ¢ ﬂ?l, 0 > 0 such that

$(0) = x, $(0) =y, ¢(t) €D for 0 <t < 6. By (5.3), for




ID(x,N) = inf ID(x,y) = min I
yEN yCN

D(X.y).

We make the following assumptions (cf. [7, pp. 359-360]):

(BB) b(y)-V(y) < 0 for every vy € 3D, where V(y) 1is the

exterior normal.

(84) There exists a compact set K C D such that:

(i) K contains the w-limit set of the solution
Eo(t;x) of (3.3) for each x € D - K.

(ii) ID(xl'X2) = 0 for every x,,x, € K,

1862

(iii) Let K“ denote the H-neighborhood of K, and

/\‘1 =D - KU. Then there exists ¢, tending to 0 as

H > 0 such that

R Oy € Ig(xy) + ¢y forall x, y€D-K
"

[’ 2u°

Assumption (B4) holds, in particular, if K consists of a

single point x* to which (3.3) is asyvmptotically stable from D.

By (B4)(ii), ID(xl,y) = ID(xz,y) A Xyr X, € K. Let

vV = ID(x,aD) = min ID(x,y), x € K,
v E3D
!={yedp: I (x,y) =V, x €K},

Theorem 6.1. Let (Al), (B3), (B4) hold. Then

T b




dist(CF(lS),X) ~ 0 in probability as o ~ 0.

Proof. Given u > 0 let S be open with C2 boundarv

3§ and K C s C K“. Let A =D-S; and let A = 3K

2u
(we take 1 small enough that EZu C D.) Let N C 3D be closed
: . 0 B : :
with % CN and N = N (NO = interior of N relative to D).
Let Nc = 9D - N. There exists P > 0 such that, for x € K,

c
ID(x,N) =\, ID(x,N ) > Vv + 20,

By (B4) we may choose W small enough that
(6.1) max I,(z,N) <V + @ < min I\(z,NC).
z e ; z€N -

Now (B3), (B4) imply (Bz). Bv Lemma 3.1 (B?) implies (Bl)‘ By

(6.1) and Theorem 5.1
(>
QA(Z,NC)

(6.2) Aim e =0
€20 qA(z,N)

uniformly for =z € A,

Given x = &F(O) in D, we define random times tn'sn as
follows
_€
IO = ISt time t such that & (t) € J3A
., - ISt time t > [n-l such that St(t) €EA (n> 1)
(n = lSt time t > Sh such that Cr(t) €3 (n>1).

18
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Consider the events

€ €

D

T £E (1) € N}

V’

o m

]

Tor ik LR S WL,

O .

By the strong Markov property

P (A,) = E_IX ay (ETs,) /10 ]

'[E>
Sv

P_(B,) =EIXx . @ (E1s,),N8],

i 5 >sv

with Xg the indicator function of an event G. By (6.2) given

d > 0 there exists Ed such that

(4 €
qA (ZINC) f qu (Z,N)

for all z € A, 0 < € < €q° Since Eg(sv) € A, we have Px(Bv) <

d Px(Av)' Moreover,

é P_(A)

A
<t
o)
3
>
<
G
w
<
]
av)
b
~
Om
N
8
I
(=]

Therefore, for 0 < € <

z

& |
1
Pl | D)
Since 4 1is arbitrary, this proves Theorem 6.1.

Note. Theorem 6.1 is slightly less general than [7, II,

Theorem 7.2, p. 361]. We have included it to illustrate the use

e e o
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of Theorem 5.1. Theorem 6.1 has immediate applications to solutions
S € € y ; €
to the Dirichlet problem £ u =0 in D with u =U on @D
(7, 1T, p. 372). For instance, if | consists of a single point
y*, then ut(x) > U(y*) as ¢t » 0, for all x ¢ D. If K consists
*

of a single point x" ¢ D, then results equivalent to Theorem 5.1

were used in [17, Lemma 1] to show that

lim € log E *L; =V = min I_(x*,y).
€0 X y€dD

7. Finite time results. Let us now consider the nonautonomous

form of (1.1), on a finite time interval s < t < T:

(7.1) a5 = blt,& (t)1dt + vE alt,& (t) dw
with initial data Eg(s) = X. We assume that:
(A2) b(s,x), 0(s,x), and the inverse o_l(s,x)

n+l

are bounded, Lipschitz functions on R

We fix T and consider initial data (s,x) in the cylinder

Q= (=~,T) X D. Given N C 3D let

0
(i« 2) IQ(S'X'N) = inf f L{t,¢(t) r‘f’ Gt dt,
$,0 ‘s

where the infimum is taken among all ¢ € ! and 0 € [s,T]

such that ¢(s) = x, ¢(t) €D for s <t <0, ¢$(0) € N. The

function L is as in (1.3). Let
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€ . £ sk
(7.3) IQ(s,x,N) = =& log Psx(tD € QR (tD) £ N).
Theorem 7.1. Assume (Az), and that N = NO. Then for each

(s,x) €0,

. t
lim IO(s,x,N) = I((s,x,N).
: 0 Q
€0
Theorem 7.1 can be proved by the same method as for Theorem 5.1.
The elliptic equation (2.1) is now to be replaced hy the backward

& £k
equation 0 = g_ + ¥ g , where

s
€ o6, €
% o176 (1))
(7.4) g (s,x) = Esxexp - :
E e . € €
where Uy F mln(ED,T), (s,x) € Q. The function J = -€ log g

satisfies the corresponding dynamic programming equation, in time
dependent form. For the finite time probhlem, assumptiong like
(Bl)' or (B3) and (84), are unncessary. However, without (B3)
one may have IQ(s,x,N) = 0, in which case Theorem 7.1 is un-
interesting.

For the special case N = 3D we have (see [7, p. 347]):

€
-1 D Tt - X =
Corollary. iig € Pustly 2 T IQ(S,Y,BD)
A proof of the Corollary using stochastic control ideas was
given in [5].
Instead of repeating for the finite time case details of the
argument in §'s 2-5, let us outline a somewhat different proof

of Theorem 7.1. A slight refinement of the method, which we
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shall not give, shows that the convergence in Theorem 7.1 is
uniform on compact subsets of Q U {(-»,T) X NO}.

First of all, let us derive the finite time analogue of
Theorem 2.1 in a different way using the Girsanov formula and Ito
stochastic differential rule. Let v(t) be a bounded, non-
anticipative control process on ([s,T]j, and n the solution of

(7.5) dn = v(t}dt + /€ o[t,n(t)]dw.

Equation (7.5) is obtained from (7.1) by replacing the drift co-

efficient b by v. Let
hitl = o S, nte) ) IBlEnlE)) - vie)l.

By Girsanov's formula [7, I, Chap. 7]

8 (T 0,6 (1)) 1 L i 2
Eexp|l- —2 9@ | = pexpl|- £ {00, non+ 2 J In(e) | %at}

. 1 T 7f
" —— I h(t) 'dw|,
VE s

where 0 is the exit time of (t,n(t)) from O and T the

_€
exit time of (t,&t (t)) from Q.

Let us require that v(t) b(t,n(t)) for ¢ > 6. Then

Sine) |2 = nig,nit) vie)), s <t <o,

and h(t) = 0 for t > 0. By (7.4)

T TP
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qtfs,x) = E exp(-X),

: 0 0
(7.6) X = %{‘»(0.11(\3)) + I L{t,n(t),v(t))dt - /e [ h(t)‘dw}

S

By Jensen's inequality, E exp(-X) > exp[-F(X)], with equality if

: ~1lg€
and only if X = constant almost surelv. Ilowever, E(X) = € b’ (s,x%,Vv)
S ; ; f -1g€
where "f is defined as in (2.9). Thus, g > exp [€ 5/ ]. To
{4

; . € R ?
get equality, we define v ,n as in &2 using the feedback

control law (cf. (2.14))
V'(S.x) = b(s,x) - a(s,x)(J;)'.

Let X be defined by (7.6) when n=n, v=v , 0 = UE, the
exit time of (t,n\(t)) from Q. We apply the Ito differential
rule to J[(t,nl(t)) and use the fact that J( =& on 9Q to
conclude that X = *—]J'(s,x) almost surely. Thus, VE(t) is
an optimal control process. This proves the finite time amalogue
of Theorem 2.1.

In the last step of this argument we have used the fact that
Jl(s,x) is of class Cl’z(Q) M Cl(6). This follows ftrom the fact
that g= = exp(-f—ljl) is a positive solution of the linear
parabolic equation 0 = qi + jfegc. By [12, Chap. IV, §9],

£ C1,2

g ¢ Q) N Cl(ﬁ) provided the restrictions of VY(s,x) to

(==, T)] x aD and to (T} x D are C2.
It would be interesting to avoid results from the theory of
parabolic partial differential equations altogether in this

argument. This could perhaps be done using methods from (2,86]

or [1, Chap. 1V].
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€
Let us, for brevity, set IQ(s,x;N) = I%(s,x), TQ(s,x;N) = I(s,

In order to prove Theorem 7.1 it suffices to show that

(7.7) lim sup 1% (s,x) < I(s,x)
£>0

(7.8) lim inf I°(s,x) > T(s,x).
€0

Let us first outline a proof of (7.8), which does not involve
the Prokhorov compactness criterion and the Skorokhod theorem
used in §4. By introducing penalty functions as in §5, it suffices

to prove the following Lemma 7.1, which replaces Lemma 4.2. Let

I = ((~»,T) x 3D) U ({T} x rRM.

For any s < T and x t Rn, let

(7.9) J(s,x) = min {f L[t.¢(t).$(t)]dt + ¢f“.¢(“)]}.

¢, 8 s

i
b

where the minimum is taken among all ¢ ¢ le such that ¢ (s)

"
and 0 such that (Y,9(9)) € J. Let J = -¢ logg .

Lemma 7.1. Assume (A,) and that ¢ is Lipschitz. Then

lim inf J[(s,x) > J(s,x).
£()

Proof. For ¢ > 0 let V' =b - a(J;)' be the optimal feed-

i
|

1}

%x)s

back control, as in (2.14). Given (s,x) ¢ Q, a brownian motion w,

and Lﬁk} to which w is adapted, we define v' (t),n' (t),¢' (t)
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as in §4 Dby

€ 3 rt 3
no(t) = ¢ (t) + /EJ olr,n (r)ldw,

S

€ t ¢
. (t) = x + v (r)dr,
s

t

vit) = viIe,n"(e)], s <t<of,

&
with U the exit time from @ of (t,nh(t)). For £ >0,

vc(t) = 0. Let

=

3 0 : _
(7.10) G = f L(t,n"(t),vE(t))de + a0, n%0%).
S

Let us show that for some constant M
€ € , €
(7.11} J(s,x) < G + M||n=¢ ][,

where || || 1is the sup norm on [s,T]. By (1.3) and assumption

(A2), L(t,y,v) > cllvl2 - c, with < > 0. Hence there is a
[

~ Tt
constant C, such that J(s,x) < 6 if f |v%t)|2dt 3 0

o€ s 1
Suppose that I IVL(t)Izdt X Cl' An elementary dynamic programming
S
argument shows that
u .
(7.12) J(s,x) < f L(t,¢,d)dt + J(a,¢ (n))
s
for any ¢ € ot with ¢(s) = x and any « ¢ [s,T]. Moreover,

there exists C, such that x ¢ Rn, y € 9D imply

s e 2 DY e ——
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(7.13) J(s,x) < v(s,y) + C,y|y~-x].
This is seen by taking in (7.9) the linear function
P(t) = x + v(t-s), v = [y=x| " y-x)

and using the fact that ¢ is Lipschitz. If s = T, (7.13) holds

il

for all x,y, since J = ¢ when s T. By (A,) and (1.3) there

exists C3 such that

(7.14) |L(t,y,v) - Lit,z,v) | < Cyly-z| (1+|v]?)
for all y.z, v € R, By (7.12) with o = 8%,
()g t (3 € & ;
J(s,X) _<, J L(tr(p .rV‘)dt * J(e R (V)
S
> 86 & { € 5
<6 o+ I |L(t,9 ,v) - L(t,n ,v)|dt +

+ 305,0500%) - 0(6%5,n%0%)).

t

We use (7.13) with (s,x) replaced by w5 ¢%(") ana y by
nE(OC). In (7.14) we replace y by ¢r(t) and z by nE(t).
Then (7.11) holds with M = CB(T—s+C1) + Cz.

EG'. By (7.11)

Since vb(t) is optimal, Je(s,x)
J(s,x) < I°(s,x) + E[|n"=¢°]].

g : A -
Since o is bounded, E||n =¢ || » 0 as € » 0. This proves

Lemma 7.1.
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From Lemma 7.1 inequality (7.8) follows, as already indicated.
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It remains to consider inequality (7.7). As mentioned in §5,

(7.7) is an easy consequence of the first Ventcel-Freidlin estimate.

Let us outline a somewhat different argument to get (7.7). Let

N* = (~»,T) X NO. We begin with the following:

Lemma 7.2. Given a compact set A C Q U N* there exist €9rC

<reff) e N > exp(-ce™h  for all (s,x) € A,

[

T
such that psx( D

< & € t,o,

Lemma 7.2 can be deduced from the Girsanov formula, or by a
direct proof (which we omit). We then prove (7.7) as follows.

Consider any ¢ of class Cl and 0 < T such that

¢(s) = x, ¢(t) ¢ b for s <t < @, $(8) k& NO, p(t) £ D for t >0.

Let ﬁg be the solution of (7.5) with ng(s) = X using the

deterministic control v(t) = ¢(t). Let AO be open relative to E

Q, with (t,e(t)) € AO for s < t < 0 and AO co LJN*. Now

€ Ry ! : : :
I (s,x) satisfies in O the dynamic programming equation

" - n .
0 = I£ - ¥ IE + min[L(s,x,v) + s V). i
s 2 j, k=1 jk xjxk v X 5

Moreover, IC € Cl'z(Q) N Cl(AO). Let BF be the exit time of

(t,ﬁe(t)) from AO. As in (2.11)

€

R . ek
(7.1) 1%(s,x) < E{J L(t,7%,¢)rat + I‘(e“,n‘(ﬁc))}.
s

As €+ 0, |[|[A°=#|| ~ 0 with probability 1 and g° » 6 in

probability. Moreover, Ie(t,y) =0 for (t,y) € N*; and by

DAL bt ‘
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Lemma 7.2, Ig(t,y) <€ for al)l fE,9) 1 AD. Then

T (85,77 (8")) < cpL(85, A (R")) £ N*1,

and the right side tends to 0 as ¢ > 0. We then have by (7.15)
. ¢ :
(7.16) lim sup IL(s,x) < J L(t,¢,0)dt.
£-+0 S
Since the infimum of the right side among such ¢,0 is 1I(s,x),

we get (7.7).

Note. The same reasoning can be used to prove (5.5). Given
5 %
T>0, let Q= (-,T) XA . Since I,(x,N) < I (0,x,N), (7.16)

with D replaced by A implies

1 0 ,
lim sup I;(x,N) < I L($,9)dt
€0 0

for any ¢ such that ¢(0) = x, ¢(t) ¢ &4 for 0 <t < 6,

¢ (0) € N0 (take any T > 0). The infimum of the right side is

e e

0
IA(x,N )

A stronger result than Theorem 7.1 (or Theorem 5.1) would be

an asymptotic expansion in powers of ¢ of the form
€ o m_ m
(7.17) IQ = IQ B ECe F wse BTG + o(e).

Such an expansion can only hold in regions where IQ is a smooth
solution of the Hamilton-Jacobi equation, constructed from

minimizing curves for (7.2). Such regions were called in [4]




29

regions of strong regularity. It seems likely that the method of
[4] can be adapted to obtain (7.17) in regions of strong regularity.

However, this matter is not considered here.
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